Repository logo
  • English
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All publications
  • English
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Usenko, Andrii Yu."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Analysis of Changes in Global Warming Potential during Enrichment and Production of Battery-Grade Graphite Using Electrothermal Fluidized Bed Technology
    (IOP Publishing Ltd, 2024) Hubynskyi, Semen M.; Sybir, Artem; Fedorov, Serhii S.; Usenko, Andrii Yu.; Hubynskyi, Mykhailo V.; Vvedenska, Tetyana
    ENG: The greenhouse gas emissions during the production of anode class graphite for the conditions of Ukraine have been calculated. Conventional technologies and technologies using electrothermal fluidized bed (EFB) for natural and synthetic graphite have been studied. Calculations are carried out with respect to the whole technological chain, starting from extraction and processing of raw materials and ending with finishing processing (coating). As a result, it is shown that the technology of using EFB for purification of natural graphite and graphitization of synthetic graphite is competitive in terms of global warming potential (GWP). In the production of natural graphite using thermal purification with EFB instead of chemical purification, emissions of greenhouse gases practically remain at the same level. At the same time, the use of acids is eliminated, and the environmental impact associated with them is reduced. Production of synthetic graphite of anodic quality in EFB furnaces allows to reduce greenhouse gases (GHG) emissions by 40-50% in comparison with traditional graphitization technologies in Acheson and Kastner furnaces. The effect is achieved by reducing energy and raw material consumption.
  • Loading...
    Thumbnail Image
    Item
    Efficiency of Low-Calorific Fuel Use in Counterflow Lime Kilns
    (D.A. Tsenov Academy of Economics, Svishtov, Bulgaria, 2023) Foris, Svitlana M.; Pererva, Valeriia Ya.; Usenko, Andrii Yu.; Foris, Oleksiy M.
    ENG: Highly expensive energy carriers require revision of the existing engineering approaches in heating of industrial furnaces. The paper presents the results of research into the performance of a shaft kiln for lime-stone burning, which was fired with mixtures of natural gas and a fuel gas of a low calorific value. On the basis of studying various schemes of fuel distribution between the burners, the optimal operation mode of the kiln with reduced consumption of natural gas by 30% was identified. The lime quality indicators increase when the blast furnace gas is supplied to the central burner and improve when supplied to the peripheral burners. The joint supply of blast furnace gas in the calorific value section of the natural blast furnace mixture 9.4 ÷ 35 MJ/m3 allows keeping the performance of the furnace unchanged. At the same time, the coefficient of replacing natural gas with blast furnace gas is close to unity The proposed mode of heating the furnace with a capacity of 200 t/day with a natural blast furnace mixture provides 30% natural gas savings.
  • Loading...
    Thumbnail Image
    Item
    Study of Cellulose Additive Effect on the Caking Properties of Coal
    (Dnipro University of Technology, Dnipro, Ukraine, 2023) Koveria, Andrii; Kieush, Lina; Usenko, Andrii Yu.; Sova, Artem
    ENG: Purpose. The work aims to study the effect of cellulose on the caking properties of various types of coking coal used in coking blends. The change in caking abilities has been analyzed to achieve the aim using standard techniques. At the same time, the effect of biomass additives on the plastic properties of coal has been analyzed comprehensively; the optimal amount of additive for practical purposes has been determined. Methods. Multiple coal characteristics in the plastic stage have been studied using a dilatometric method, the enhanced swelling pressure method, the plastometric method, and the Roga index test. The first three methods make it possible to characterize the caking properties of coal; and the Roga index test characterizes its coking ability. Findings. It has been identified that the optimal amount of biomass additive to study the effect on the properties of coal in the plastic state is more than 5 wt. %. In the paper, experimental dependences of the 5 wt. % cellulose addition influence on the caking properties of four coal grades have been obtained. The results showed a slight decrease in caking properties in terms of swelling, swelling pressure, thickness of the plastic layer, and caking ability. Simultaneously, the most sensitive methods for assessing the effect of cellulose addition on the coal plastic properties are the dilatometric method as well as the enhanced method for the swelling pressure determination. Originality. A comprehensive study of the effect of pure cellulose as a component of lignocellulose biomass on the properties of different coal grades in the plastic state (i.e. caking prperteis) has been carried out. A slight change in the coal properties in the plastic state with adding 5 wt. % cellulose, decreasing caking properties, has been shown. An important, not previously reported, conclusion is that the cellulose additive does not have any noticeable effect on the physical properties of the coal charge owing to its loose structure. Practical implications. A slight change in the caking properties of coal has been established with the addition of 5 wt. % which is of practical importance for the preparation of coal blends, and the coke production in the cases of using additives of lignocellulosic biomass without losing its quality. Additionally, renewable additive use while obtaining fuels and reducing agents is an approach to mitigate the negative environmental impact.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback