Статті КАПЗБМ (Раніше КУПББМ)
Permanent URI for this collection
ENG: Articles
Browse
Browsing Статті КАПЗБМ (Раніше КУПББМ) by Author "Biliaiev, Mykola M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Application of Local Exhaust Systems to Reduce Pollution Concentration Near the Road(Silesian University of Technology, Katowice, Poland, 2020) Biliaiev, Mykola M.; Pshinko, Oleksandr M.; Rusakova, Tetiana I.; Biliaieva, Viktoriia V.; Sładkowski, AleksanderEN: In this study, the methodological foundations of the technology for the local reduction of chemical pollution from vehicles were improved through the use of twolevel suction units and guide plates of various lengths installed on the nozzles of the suction devices. A program has been developed for the numerical calculation of the carbon monoxide concentration field for evaluating the efficiency of using two-level exhaust systems with different lengths of guide plates on the gas flow selection pipes. The solution of the equations of hydrodynamics and mass transfer is carried out on the basis of finite-difference methods. A number of physical and computational experiments have been carried out; it has been established that the concentration of carbon monoxide in the zone of two-level suctions location decreases by 46-68%.Item Mathematical Modeling of Aeroion Mode in a Car(The Silesian University of Technology, Katowice, Poland, 2022) Biliaiev, Mykola M.; Pshinko, Oleksandr M.; Rusakova, Tetiana I.; Biliaieva, Viktoriia V.; Sładkowski, AleksanderENG: Summary. In this study, a mathematical method is proposed for calculating the concentration field of air ions of different polarities and dust levels in the passenger compartment, taking into account the geometry of the passenger compartment and seats, shelves, and other internal elements of the passenger compartment. The method also takes into account changes in the rate of the air flow ventilation, the location and number of ionizers, and sources of positive ions and dust, taking into account their different intensities and locations. On the basis of a numerical model for this method, software has been developed that allows users to carry out computational experiments without requiring much time for calculation. Based on the results, the optimal location of the ionizer in the passenger compartment of the car was determined to ensure comfortable conditions for the stay of passengers, which favorably affects their health. It has been found that the presence of two ionizers is optimal for creating comfort in the car with an ionization intensity of ions/s located at the top of the car. If there is one ionizer located on the dashboard or at the top of the car with a higher ionization rate than ions/s, it is not possible to simultaneously provide optimal ionization parameters for passengers in the front and rear seats of the car.