Мости та тунелі: теорія, дослідження, практика (ДІІТ)
Permanent URI for this community
ENG: Bridges and tunnels: theory, research, practice
Browse
Browsing Мости та тунелі: теорія, дослідження, практика (ДІІТ) by Author "Ovchynnykov, Pavlo A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Parameters of Typical Continuous Steel Truss Spans under a Yigh-Speed Movement(Дніпропетровський національний університет залізничного транспорту ім. акад. В. Лазаряна, Дніпро, 2017) Reshetnov, Artem Yu.; Solomka, Valentina I.; Ovchynnykov, Pavlo A.ENG: Purpose. Determination of the stress-strain state of a typical continuous steel truss span by calculation according to national norms and computer simulation in the conditions of passage of high-speed passenger trains. Methodology. In this work, the stress-strain state of a continuous truss span of the typical project No. 3 501.2-166 for the possibility of its application in areas with perspective high-speed railway traffic was investigated. Calculation of the specified span structure for DBN V.2.3-14-2006 «Constructions of transport. Bridges and pipes. Design rules» for railroad loading С14 was executed. The cross-sections of the elements of a continuous truss span were calculated and the necessary checks performed. For the given span structure in the software complex a model was developed and the stress-strain state at various speeds of railway transport according to European and national norms was investigated. The acceleration and deflection of a continuous steel truss span were determined and their comparison with normative requirements was performed. Findings. As a result of simulation in the software complex for a continuous steel truss span, acceleration and deflection under the action of cargo and passenger load at different speeds of movement were determined. The cross-sections of the elements of a continuous steel truss span were calculated. Originality. The results of the study can be applied in the development of national regulatory documents on high-speed rail transport and in the design of bridge structures with continuous truss spans in areas with high and higher-speed railway traffic. Practical value. The obtained results of the research will allow to effectively use continuous steel truss spans of typical designs in areas with high– and higher-speed railway traffic.Item The Research of the Deflected Mode for the Steel Truss Bridge Span with Upper-Level Traffic by the Computer Modeling Method(Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпропетровськ, 2015) Ovchynnykov, Pavlo A.; Solomka, Valentina; Miroshnik, Vitaliy; Pinchuk, AnnaENG: Purpose. To confirm the result of bridge span classification by using the computer modelling for truss span with upper-level traffic and polygonal lover belt and to determine minimal sufficient complexity of computational model that provides a possibility of adequate numerical calculation of given structure. Methodology. The result confirmation was executed by the comparison of stresses, that were yielded as a result of truss’ model loading with loads of predetermined class, with allowed stresses that were adopted for the determination of the afore-mentioned loading. The determination of optimal computational model was performed by the comparison of calculation results for models of different complexities. Findings. The results of the span modelling are similar enough to the results of it’s calculation, which confirms the accuracy of both methods and provides obvious idea about work of truss elements and critical places. The comparison of calculation results of different models showed that the using of shaft model with hard junctions and elements’ bending accounting is optimal. Originality. Computer modeling was used to confirm the results of span classification, which was conducted by the standard method. An optimal computational model was determined for trusses that are similar to given. Practical value. Results of analytical calculation were confirmed with demonstration of critical elements and obvious demonstration of results. The optimization of the model allows to lower calculation time and complexity of executing them for similar trusses.