Кафедра Гідравліка, водопостачання та фізика (З 2022 року кафедра створена шляхом злиття кафедри Гідравлика та водопостачання та кафедри Фізика)
Permanent URI for this community
ENG: Department Hydraulics, water supply and physics
Browse
Browsing Кафедра Гідравліка, водопостачання та фізика (З 2022 року кафедра створена шляхом злиття кафедри Гідравлика та водопостачання та кафедри Фізика) by Author "Berlov, Oleksandr V."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item CFD Modeling of Traffic-related Air Pollution in Street Canyon(Printing House “Technologija”, Kaunas, Lithuania, 2024) Biliaiev, Mykola M.; Biliaieva, Viktoriia V.; Berlov, Oleksandr V.; Kozachyna, Vitalii A.; Kozachyna, Valeriia V.; Yakubovska, Zinaida M.ENG: High pollution levels are often observed in urban street canyons. Different mathematical models are intensively used to predict pollution levels in urban street canyons. In this paper quick computing 3D CFD model is proposed to compute wind flow over buildings and pollutant dispersion in street canyon. To simulate wind flow over buildings 3D equation of potential flow has been used. Pollutant concentration field has been modelled using three-dimensional equation of pollutant dispersion. Governing equations are also included simplified equations to describe pollutants chemical transformations in atmosphere. To solve numerically governing equations implicit difference schemes have been used. The computer code to realize the proposed numerical models has been developed. Results of numerical experiments are presented.Item Experimental Study of the Intensity of Coal Dust Removal(Prydniprovs'ka State Academy of Civil Engineering and Architecture, Dnipro, Ukraine, 2023) Biliaiev, Mykola M.; Berlov, Oleksandr V.; Brazaluk, Yuliia V.; Kozachyna, Vitalii A.; Oladipo, Mutiu OlatoyeENG: Problem statement. Industrial sites where coal storages are located are intensive sources of dust pollution of the environment. There is an important problem of assessing the intensity of dust removal into the atmospheric air from polluted areas. Knowledge of the intensity of dust removal into the atmospheric air makes it possible to scientifically assess the impact of contaminated sites on the pollution of the environment and work zones at industrial sites. The solution to this problem can be obtained experimentally. The purpose of the article. An experimental study of the value of the air flow velocity at which the detachment of dust particles from the surface with coal begins and their removal into the air and the determination of the intensity of the emission of coal dust from the contaminated surface. Methodology. The intensity of removal of coal dust from the contaminated area was studied experimentally in laboratory conditions. The research was conducted on coal samples from DTEK “Pavlohradvuhillya”, grade “ДГ. During the research, the velocity of the air flow at which the process of movement of dust particles along the emission source began and the velocity of “detachment” of dust particles and their removal from the emission source were determined. At the second stage of experimental research, the intensity of removal of coal dust from the polluted area was determined. Scientific novelty. The values of the air velocity at which the removal of coal dust particles from the contaminated area begins were determined experimentally. The regularity of the intensity of the removal of coal dust depending on the velocity of the air flow over the contaminated area was obtained. Practical significance. The obtained experimental data make it possible to determine under which weather conditions there is a risk of dust formation and the removal of dust into the atmosphere. The empirical dependence obtained by processing experimental data can be used for a scientifically based assessment of the level of pollution of working areas at industrial sites where there are coal storage facilities. Conclusions. The value of the velocity of the air flow at which the movement of dust particles on the contaminated surface begins, as well as the value of the velocity of the air flow at which the removal of dust particles into the air begins, was determined experimentally. The resulting empirical model can be used to estimate environmental damage due to dust pollution of atmospheric air.Item Modeling Influence of TiO2 Barrier Coating on Pollutant Dispersion Near Road(Kaunas University of Technology, 2023) Biliaiev, Mykola M.; Berlov, Oleksandr V.; Biliaieva, Viktoriia V.; Kozachyna, Vitalii A.; Kozachyna, Valeriia; Yakubovska, Zinaida M.ENG: Mitigation strategies for near-road air pollution are of great interest nowadays. Sound barriers near the road are very effective to decrease pollutant concentration. The use of titanium dioxide (TiO2) barrier coating provides additional effect which allows to decrease pollutant concentration near road. In this study quick- computing CFD model was developed to access influence of TiO2 barrier coating on pollutant concentration. To simulate wind flow over barrier with TiO2 coating model of potential flow was used. The process of NOx dispersion from car was computed using mass conservation equation. Finite-difference schemes were used for numerical integration of governing equations. The computer code was developed on the basis of proposed numerical model. Results of numerical simulations are presented.Item Prediction of Atmospheric Air Pollution Near a Coal Stack in Adverse Weather Conditions(IOP Publishing Ltd, 2023) Biliaieva, Viktoriia V.; Berlov, Oleksandr V.; Kozachyna, Vitalii A.; Nochvai, Volodymyr; Yakubovska, Zinaida M.; Oladipo, Mutiu OlatoyeENG: Coal piles on the territory of enterprises are long-term sources of dust pollution of atmospheric air. Forecasting the level of dust pollution of the air for such objects is carried out, as a rule, for convection conditions. But during inversion, very high concentrations of dust can occur on industrial sites. The task of assessing the level of dust pollution of atmospheric air at an industrial site during dust emission in conditions of inversion from a coal stack is considered. A three-dimensional equation of convective-diffusion dispersion of contamination in atmospheric air, compatible with the approach of Prof. Berliand M. on determining the value of the vertical diffusion coefficient in the surface layer of the atmosphere for the case of inversion, to model dispersion of dust from a coal stack under inversion conditions is used. Numerical integration of the modeling equation of convective-diffusion transport of contamination is carried out on the basis of the splitting method compatible with the use of a locally one-dimensional finite-difference scheme. The results of a computational experiment to determine dust pollution zones at the Prydniprovsk thermal power station are presented.Item Quick computing CFD model to predict chemical pollution in room(Український державний університет науки і технологій, Дніпро, 2025) Biliaiev, Mykola M.; Biliaieva, Viktoriia V.; Berlov, Oleksandr V.; Kozachyna, Vitalii A.; Mashykhina, Polina B.ENG: Purpose. The problem of accidental contamination of workspaces attracts special attention, since in the event of such extreme situations, intense chemical contamination of the air in work areas occurs. This poses a threat of toxic exposure to workers. When assessing the consequences of such situations, it is necessary to take into account the time factor, in particular, to quickly determine the creation of concentrations of chemically hazardous substances. In this regard, an urgent task is to develop effective mathematical models for rapid assessment of the consequences of extreme situations in the working areas of chemically hazardous facilities. The paper considers a CFD model for analyzing the process of chemical air pollution in a workspace during an accidental release of a chemically hazardous substance. The solution of the problem is based on the numerical integration of the fundamental equations of continuum mechanics. Methodology. To calculate the air velocity field in the working room during the operation of supply and exhaust ventilation, a mathematical model of the motion of an inviscid fluid was used. The equation of convective diffusion motion was used to calculate the concentration of a chemically hazardous substance in the workspace. The integration of the modeling equations was carried out using finite difference schemes. Findings. A dynamic model has been created to calculate the spread of a chemically hazardous substance in a work-space. On the basis of the built CFD model, a computer program was created to conduct a computational experiment. Originality. A CFD model has been created to predict the level of air pollution in a workspace in the event of toxic gas emissions. The model is based on the fundamental equations of aerodynamic mechanics and mass transfer. The model makes it possible to determine the effect of the ventilation mode, the intensity of emission of a chemically hazardous substance, the location of equipment in the workspace, and the dynamics of the formation of concentration fields. Practical value. The developed CFD model can be used to quickly analyze the consequences of accidental emissions of a chemically hazardous substance in a workplace and assess the risk of toxic exposure of workers.Item Simulation of Chemical Accident with Ammonia at the Pipe Line(Kaunas University of Technology, 2023) Biliaiev, Mykola M.; Berlov, Oleksandr V.; Biliaieva, Viktoriia V.; Kozachyna, Vitalii A.; Kozachyna, Valeriia; Mashykhina, Polina B.ENG: Ammonia is transported through Ukraine via the Togliatti-Odesa ammonia pipeline. The hostilities in Ukraine pose a risk of damage to this transportation system as a result of a shell, mine, etc. hitting the transportation system. Therefore, it is very important to predict the possible consequences of environmental pollution in the event of such an extreme situation. A numerical model was developed to solve this problem. The three-dimensional equation of convective-diffusive transport of an impurity in the atmosphere is used to predict the dynamics of pollution of atmospheric air and the underlying surface. Finite-difference splitting schemes are used to numerically integrate this equation. On the basis of the constructed numerical model, a computer code was developed to take into account the change in the intensity of ammonia leakage from the damaged pipeline. The results of a computational experiment are presented.