Факультет прикладних комп'ютерних технологій (ДМетІ) <br> Дніпровський металургійний інститут (ДМетІ)
Permanent URI for this community
UK: Факультет прикладних комп'ютерних технологій (ДМетІ)
Дніпровський металургійний інститут (ДМетІ) EN: Faculty of Applied Computer Technology
Dnipro Metallurgical Institute
Дніпровський металургійний інститут (ДМетІ) EN: Faculty of Applied Computer Technology
Dnipro Metallurgical Institute
Browse
Browsing Факультет прикладних комп'ютерних технологій (ДМетІ) <br> Дніпровський металургійний інститут (ДМетІ) by Author "Biliaieva, Viktoriia V."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Analysis of Air Dust Pollution in the Transport Compartment of the Launch Vehicle at the Stage of the Pre-launch Preparation(Printing House “Technologija”, Kaunas, Lithuania, 2024) Biliaiev, Mykola M.; Biliaieva, Viktoriia V.; Kozachyna, Vitalii A.; Kozachyna, Valeriia V.; Mashykhina, Polina B.; Semenenko, PavloENG: At the stage of the pre-launch preparation, it is necessary to fulfill very strict environment conditions inside the main fairing where the satellite is located. Namely, it is very important to predict dust concentration inside the main fairing and especially near satellite surface during forced ventilation. To predict air dust pollution inside of main fairing 2D fluid dynamics numerical model has been developed. The governing equations include equation of potential flow to simulate air flow inside the main fairing and equation of pollutant dispersion. Also, empirical model has been used to calculate the number of dust particles fall to the satellite surface. Implicit finite difference schemes of splitting have been used for numerical integration of governing equations. The computer code has been developed on the basis of proposed numerical model. The results of computational experiments to estimate dust concentration field inside the main fairing of the launch vehicle are presented.Item CFD Modeling of Traffic-related Air Pollution in Street Canyon(Printing House “Technologija”, Kaunas, Lithuania, 2024) Biliaiev, Mykola M.; Biliaieva, Viktoriia V.; Berlov, Oleksandr V.; Kozachyna, Vitalii A.; Kozachyna, Valeriia V.; Yakubovska, Zinaida M.ENG: High pollution levels are often observed in urban street canyons. Different mathematical models are intensively used to predict pollution levels in urban street canyons. In this paper quick computing 3D CFD model is proposed to compute wind flow over buildings and pollutant dispersion in street canyon. To simulate wind flow over buildings 3D equation of potential flow has been used. Pollutant concentration field has been modelled using three-dimensional equation of pollutant dispersion. Governing equations are also included simplified equations to describe pollutants chemical transformations in atmosphere. To solve numerically governing equations implicit difference schemes have been used. The computer code to realize the proposed numerical models has been developed. Results of numerical experiments are presented.Item Development of a New Ergonomic Risks Management Algorithm on the Example of Drivers(РС ТЕСHNOLOGY СЕNTЕR, Kharkiv, 2024) Tsopa, Vitaliy; Cheberiachko, Serhii; Cheberiachko, Yurii; Deryugin, Oleg; Chencheva, Olga; Rieznik, Dmytro; Klimov, Eduard; Lashko, Yevhenii; Pashko, Dmytro; Biliaieva, Viktoriia V.ENG: The object of the study: the process of determining and managing ergonomic risks at workplaces when performing professional activities on the example of truck drivers. The problem lies in uncertainty when making decisions in occupational safety and health management systems. The hypothesis of the study was the possibility of assessing ergonomic risks in the occupational safety management systems of organizations based on the identification of regularities between the load index, typical working postures when performing operations and the intensity of joint movements. An ergonomic risk assessment algorithm was developed, taking into account the load index, which includes a sequence of eleven steps, which can be conditionally divided into three groups. The first is determination of the intensity of joint movement. The second is the determination of the impact of activity and the duration of the production task. The third is determining the impact of environmental factors. An assessment of the ergonomic risk of drivers was carried out for three types of production work: driving a vehicle, replacing a damaged wheel, and repairing a car. At the same time, the ergonomic risk assessment algorithm takes into account the worker’s individual state of health and environmental factors, as well as experience and work experience. It has been established that there is a high level of ergonomic risk during car maintenance due to the highest total load index, which is 30 % higher compared to other types of work of vehicle drivers. The practical application consists in the development of a universal check list of drivers based on an algorithm to determine the ergonomic risk of workers at workplaces, which consists of 11 steps.Item Identifying Regularities in the Propagation of Air Ions in Rooms with Artificial Air Ionization(PC TECHNOLOGY CENTER, 2023) Levchenko, Larysa; Burdeina, Nataliia; Glyva, Valentyn; Kasatkina, Natalia; Biliaiev, Mykola M.; Biliaieva, Viktoriia V.; Tykhenko, Oksana; Petrunok, Tetiana; Biruk, Yana; Bogatov, OlegENG: The object of the study is the dynamics of air ion spread in rooms from the source of artificial air ionization under different starting conditions. There is currently the problem of distribution of air ions in the room with regulatory concentrations in all critical zones. An effective method of ensuring proper air ion concentrations is to model their propagation from ionization sources. Existing approaches to calculating the dynamics of air ions of both polarities have been improved in this study. Unlike known solutions, the impact on their concentration of electrostatic field and the interaction of air ions with suspended particles was taken into account. A model of air ion propagation in rooms with artificial air ionization and the principles of its numerical modeling was built. The use of Laplace Equation in the aerodynamic model instead of the Navier-Stokes equation for the potential of the flow rate has made it possible to design an "Ion 3D" tool, which reduces the time of implementation of one scenario from several hours to 7 seconds. Modeling of the propagation of air ions of both polarities in the room under different initial conditions was carried out. Two-dimensional and three-dimensional models with their visualization was implemented. The peculiarity of the resulting models is that they make it possible to determine the concentrations of air ions in any section of the room by three coordinates. Given this, the rapid selection of the variants of the source data makes it possible to achieve the normative values of concentrations of air ions in the area of breathing – exceeding 500 cm-3 of each polarity. Simulation makes it possible to design a room in which, under the condition of artificial ionization of air, the concentrations of air ions close to the optimal values of 3000–5000 cm-3 are provided.Item Methodology for Modeling the Spread of Radioactive Substances in Case of an Emergency Release at a Nuclear Power Plant(National Technical University «Kharkiv Polytechnic Institute», Kharkiv, 2023) Levchenko, Larysa; Biliaiev, Mykola M.; Biliaieva, Viktoriia V.; Ausheva, Nataliia; Tykhenko, OksanaENG: The methodology for modeling the propagation of accidental releases of radionuclides from a power unit of a nuclear power plant has been developed. The calculation method takes into account the most critical factors propagation cloud - wind direction and speed, the intensity of the release radionuclides change: semi-continuous release, long-term release, instantaneous release. Diffuse processes and the presence of interference in the form of buildings were also taken into account. To solve the modeling equation of the aerodynamic model, the velocity potential equation is solved. The use of this equation instead of the traditional Novier-Stokes equation makes it possible to rationalize the calculation process in terms of the speed obtaining simulated data. To build a numerical model, a rectangular difference grid is used. The velocity potential and the quantities values of volumetric activity are determined at the centers of difference cells. The value of the airflow velocity vector component is determined on the sides of the difference cells. A finite-difference splitting scheme is used for numerical integration of the equation convective-diffusion transfer radionuclides. A computer code was developed on the basis of the constructed numerical model, the programming language Fortran was used. The approach used makes it possible to reduce the time for obtaining one scenario of an accident development. The cloud propagation dynamics determining is carried out almost in real time. This allows you to quickly respond to changing situations and make adequate decisions.Item Modeling Influence of TiO2 Barrier Coating on Pollutant Dispersion Near Road(Kaunas University of Technology, 2023) Biliaiev, Mykola M.; Berlov, Oleksandr V.; Biliaieva, Viktoriia V.; Kozachyna, Vitalii A.; Kozachyna, Valeriia; Yakubovska, Zinaida M.ENG: Mitigation strategies for near-road air pollution are of great interest nowadays. Sound barriers near the road are very effective to decrease pollutant concentration. The use of titanium dioxide (TiO2) barrier coating provides additional effect which allows to decrease pollutant concentration near road. In this study quick- computing CFD model was developed to access influence of TiO2 barrier coating on pollutant concentration. To simulate wind flow over barrier with TiO2 coating model of potential flow was used. The process of NOx dispersion from car was computed using mass conservation equation. Finite-difference schemes were used for numerical integration of governing equations. The computer code was developed on the basis of proposed numerical model. Results of numerical simulations are presented.Item Modeling the Distribution of Emergency Release Products at a Nuclear Power Plant Unit(Національний технічний університет "Харківський політехнічний інститут", 2024) Biliaieva, Viktoriia V.; Levchenko, Larysa; Myshchenko, Iryna; Tykhenko, Oksana; Kozachyna, Vitalii A.ENG: Despite the fact that much attention is paid to the safe operation of nuclear power plants, there is a possibility of an accident with the release of radionuclides. This is especially true in Ukraine, where there is a threat of the damage to nuclear reactors as a result of military operations. It is impossible to research the distribution of products emergency releases radioactive substances in laboratory conditions. Therefore, the only tool for the development predicting of an accident is the modeling the spread of a radionuclides cloud. The purpose of the research is a modeling the distribution of emergency release products in a nuclear power plant unit, suitable for the operative assessment of a development an accident. Results of the research: The mathematical model of the distribution emission products of a nuclear power plant has been developed, which takes into account the value of the initial activity of emission products, the rate of the settling radioactive particles, the wind speed components, the intensity changes radionuclide emission over time. The technique for solving the boundary value problem of modeling in conditions of a complex shape of the computational domain, taking into account the presence of obstacles to the spread of emission products has been developed. The use of the velocity potential equation in evolutionary form allows us to speed up the calculation process. The chosen splitting scheme of an alternating-triangular method allows to find the speed potential according to the explicit form at each splitting step. This allowed software implementation of the CFD model. The visualized models of the emission cloud distribution allow to determine the radiation situation in any place of the emission product distribution zone. The developed model makes it possible to quickly predict the development of an accident in space and time, which makes it possible to take measures to protect people from exposure in the shortest possible time. Conclusions: The obtained emission cloud propagation models and their visualization make it possible to determine the state of environmental pollution under various initial conditions during the development of the accident.Item Numerical Modeling of the Wind Regime on the Beaches of the Wash of the Artificial Storage Facilities for Mineral Processing Waste(IOP Publishing, 2024) Lapshyn, Yevhen; Biliaiev, Mykola M. ; Biliaieva, Viktoriia V. ; Halchenko, Zariana; Medianyk, Volodymyr; Buketov, ValentynENG: A 2D numerical model has been developed to estimate the airflow velocity field when flowing around the dam of an artificial storage facility for mineral processing waste. To solve the aerodynamic problem of determining the air flow velocity field when flowing around such hydraulic structures with a complex geometric shape, a potential motion model was applied. The numerical integration of the equation for the velocity potential is carried out using the Liebman method. The geometric shape of the tailings storage facility is formed in a discrete model using the marking method. A computer program was created to implement the developed numerical aerodynamics model. Based on the processing of the results of computational experiments, coefficients were obtained that allow us to quickly determine the value of the air flow velocity at the beginning and end of the tailing pond beach, i.e. in the area of the most intense dust emission. This allows for a quick prediction of the risk of dust air pollution at different tailing pile heights.Item Prediction of Atmospheric Air Pollution Near a Coal Stack in Adverse Weather Conditions(IOP Publishing Ltd, 2023) Biliaieva, Viktoriia V.; Berlov, Oleksandr V.; Kozachyna, Vitalii A.; Nochvai, Volodymyr; Yakubovska, Zinaida M.; Oladipo, Mutiu OlatoyeENG: Coal piles on the territory of enterprises are long-term sources of dust pollution of atmospheric air. Forecasting the level of dust pollution of the air for such objects is carried out, as a rule, for convection conditions. But during inversion, very high concentrations of dust can occur on industrial sites. The task of assessing the level of dust pollution of atmospheric air at an industrial site during dust emission in conditions of inversion from a coal stack is considered. A three-dimensional equation of convective-diffusion dispersion of contamination in atmospheric air, compatible with the approach of Prof. Berliand M. on determining the value of the vertical diffusion coefficient in the surface layer of the atmosphere for the case of inversion, to model dispersion of dust from a coal stack under inversion conditions is used. Numerical integration of the modeling equation of convective-diffusion transport of contamination is carried out on the basis of the splitting method compatible with the use of a locally one-dimensional finite-difference scheme. The results of a computational experiment to determine dust pollution zones at the Prydniprovsk thermal power station are presented.Item Quick computing CFD model to predict chemical pollution in room(Український державний університет науки і технологій, Дніпро, 2025) Biliaiev, Mykola M.; Biliaieva, Viktoriia V.; Berlov, Oleksandr V.; Kozachyna, Vitalii A.; Mashykhina, Polina B.ENG: Purpose. The problem of accidental contamination of workspaces attracts special attention, since in the event of such extreme situations, intense chemical contamination of the air in work areas occurs. This poses a threat of toxic exposure to workers. When assessing the consequences of such situations, it is necessary to take into account the time factor, in particular, to quickly determine the creation of concentrations of chemically hazardous substances. In this regard, an urgent task is to develop effective mathematical models for rapid assessment of the consequences of extreme situations in the working areas of chemically hazardous facilities. The paper considers a CFD model for analyzing the process of chemical air pollution in a workspace during an accidental release of a chemically hazardous substance. The solution of the problem is based on the numerical integration of the fundamental equations of continuum mechanics. Methodology. To calculate the air velocity field in the working room during the operation of supply and exhaust ventilation, a mathematical model of the motion of an inviscid fluid was used. The equation of convective diffusion motion was used to calculate the concentration of a chemically hazardous substance in the workspace. The integration of the modeling equations was carried out using finite difference schemes. Findings. A dynamic model has been created to calculate the spread of a chemically hazardous substance in a work-space. On the basis of the built CFD model, a computer program was created to conduct a computational experiment. Originality. A CFD model has been created to predict the level of air pollution in a workspace in the event of toxic gas emissions. The model is based on the fundamental equations of aerodynamic mechanics and mass transfer. The model makes it possible to determine the effect of the ventilation mode, the intensity of emission of a chemically hazardous substance, the location of equipment in the workspace, and the dynamics of the formation of concentration fields. Practical value. The developed CFD model can be used to quickly analyze the consequences of accidental emissions of a chemically hazardous substance in a workplace and assess the risk of toxic exposure of workers.Item Simulation of Chemical Accident with Ammonia at the Pipe Line(Kaunas University of Technology, 2023) Biliaiev, Mykola M.; Berlov, Oleksandr V.; Biliaieva, Viktoriia V.; Kozachyna, Vitalii A.; Kozachyna, Valeriia; Mashykhina, Polina B.ENG: Ammonia is transported through Ukraine via the Togliatti-Odesa ammonia pipeline. The hostilities in Ukraine pose a risk of damage to this transportation system as a result of a shell, mine, etc. hitting the transportation system. Therefore, it is very important to predict the possible consequences of environmental pollution in the event of such an extreme situation. A numerical model was developed to solve this problem. The three-dimensional equation of convective-diffusive transport of an impurity in the atmosphere is used to predict the dynamics of pollution of atmospheric air and the underlying surface. Finite-difference splitting schemes are used to numerically integrate this equation. On the basis of the constructed numerical model, a computer code was developed to take into account the change in the intensity of ammonia leakage from the damaged pipeline. The results of a computational experiment are presented.