Browsing by Author "Glazeva, Oksana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Method for Determining the Generating Capacity of the Waste Heat Recovery System of Main Engines(Springer, Cham, 2022) Rak, Alexander; Busher, Victor; Glazeva, Oksana; Chornyi, Oleksii; Kachan, Yurii; Kuznetsov, Vitaliy V.ENG: A study of waste heat recovery systems for robust ship power systems (tens of MW) and installations of relatively low power (1…3 MW) of diesel locomotives has been carried out. A method for calculating the power of gas and steam turbines as part of the waste heat recovery systems has been developed. Based on simple calculations for two operating points, the method allows you to get the amount of the waste heat recovery system generated energy in other modes, different from those given in the instructions for technical operation. Preference for one or another type of turbine generator or their combination should be provided based on a feasibility study, taking into account capital investments and the power of energy consumers in the vehicle, as well as long-term prospects in fuel-saving and reducing greenhouse gas emissions. The waste heat recovery system's energy characteristics can be used to confirm the compliance of the main power plant with the requirements of the MARPOL 73/78 convention in terms of improving energy efficiency design index and reducing greenhouse gas emissions at loads of 50%, 75%, 100%.Item Methods of Pulse Width Modulation in Cascaded High Voltage Frequency Converters(IEEE, 2022) Busher, Victor; Chornyi, Oleksii; Tytiuk, Valerii; Glazeva, Oksana; Rozlutskyi, Oleksandr; Kuznetsov, Vitaliy V.ENG: Purpose. The aim of this work is to compare the effectiveness of various methods for correcting cell failures in cascade high voltage frequency converters. These methods provide the smallest voltage drop on the motor, the least loads and oscillation of electromagnetic torque in an accident modes, and evaluate the effectiveness of pulse width modulation (PWM) methods with the injection of third harmonic and space-vector PWM in normal and emergency modes. Methodology. We use mathematical and geometrical interpretation of all analysed methods - Sinusoidal PWM (SPWM), Balanced sinusoidal PWM (BSPWM), Balanced PWM with injected 3rd harmonic (THPWM) and Balanced Space Vector PWM (SVPWM). Results. The method of balancing the phase-to-phase voltages by to such a shift of the zero point and rotation of the phase vectors, in which the amplitude of the phase-to-phase voltage decreases to the minimum possible value. Injection of the 3rd harmonic allows you to further increase the utilisation factor of power supplies in terms of voltage. But the violation of the symmetry of the phase voltages leads to the need to reduce the voltage amplitude to exclude saturation of the power supplies, which reduces this coefficient compared to the theoretically possible 15.6%. A distinctive feature of the method of balanced Space Vector PWM is that the amplitude of the 1st harmonic is always greater than the radius of the circle by 15.6%. Comparison of methods of space vector PWM (SVPWM), balancing of phase-to-phase voltage with the injection of the 3rd harmonic (THPWM) with sinusoidal PWM shows that SVPWM is the best method. Despite the more complex mathematical software for the implementation of this method, it provides the best performance in all considered emergency modes of 3...6 cascade converters. The Table of indicators for all methods are presented in the article. The use of a balanced SVPWM in combination with field oriented control makes it possible to obtain an electric drive in which, in the event of an accident, there are practically no shock mechanical and electromagnetic processes. After damage of cells the currents, electromagnetic torque and motor speed change along the required trajectory. © 2022 IEEE.