Repository logo
  • English
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All publications
  • English
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ihnatenko, Dmytro Yu."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Analysis of the Differences of the Results of Calculations of the Stability Coefficient of the Landslide Slope
    (Дніпровський національний університет залізничного транспорту ім. В. Лазаряна, Дніпро, 2019) Petrenko, Volodymyr D.; Tiutkin, Oleksii L.; Ihnatenko, Dmytro Yu.
    ENG: Purpose. Improving the accuracy of determining the stability of landslide slopes in some cases requires the use of several methods to find the coefficient of stability. Therefore, it is necessary to analyze the discrepancy between the results of the calculation of the coefficient of stability of landslide slopes. Methodology. The solution to the problem of finite element slope modeling in the LIRA-SAPR 2016 software package is based on the creation of a spatial finite element model. With its help, the nonlinear problem of geomechanics was solved with the introduction of special finite elements, which simulates the work of the soil. As a reference, the coefficient of stability was calculated by the round-cylindrical sliding surface method. Landslide slope in the software package «OTKOS» was creat-ed and calculated. Results. The results of the calculation of the finite element model of the landslide slope in the LIRA-SAPR 2016 software package were obtained. The value of the coefficient of stability of the landslide-hazardous section of the slope in the «OTKOS» was obtained using eight methods. The calculation results in the «OTKOS» are compared with the coefficient of stability determined by the method of a circular-cylindrical sliding surface. Originality. The results of the calculation of the coefficients of stability in the «OTKOS» allowed us to divide the curves of the sliding surface into two groups: that which do not belong to circular-cylindrical, and that which satisfy the results of finite element modeling. Practical value. After a series of calculations and after analyzing the results, it turned out that not all methods equally solve the problem of the stability of landslide slopes. This is due to the different limitations of each of the methods, so as a criterion for the adequacy of the results obtained, it is necessary to analyze the magnitude of the discrepancy between the obtained values of the coefficient of stability.
  • Loading...
    Thumbnail Image
    Item
    Comparative Analysis of Calculation Results of Supporting Structure of Soil-Cement Piles
    (Kaunas University of Technology, Kaunas, 2019) Pshinko, Oleksandr M.; Petrenko, Volodymyr D.; Tiutkin, Oleksii L.; Andrieiev, Volodymyr S.; Hubar, Oleksіy V.; Ihnatenko, Dmytro Yu.; Markul, Ruslan V.
    ENG: Abstract. The article presents the results of comparison of the stress-strain state of 4 models of a retaining wall structure of soil-cement piles on a landslide-prone slope. This study compares the changes in the stress distribution and displacements in the model elements of the retaining structure of soil-cement piles depending on the design parameters and the method of piles location in the body of the soil mass. The comparison of models of supporting structures of soil-cement piles on a landslide-prone slope allowed obtaining: –the comparative analysis of the quality work of individual elements of the supporting structure for strength and deformation in a three-dimensional representation; –the comparative assessment of the performance of the supporting structure of soil-cement piles on a landslide-prone slope; – histograms of dependences of changes in the angle of piles inclination to the vertical axis of their holding force, strength and deformation of the slope;
  • Loading...
    Thumbnail Image
    Item
    Comparative Calculation of the Stability of the Landslide Slope in the Software Complexes «OTKOS» and «LIRA-CAD 2017»
    (Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпро, 2018) Petrenko, Volodymyr D.; Tiutkin, Oleksii L.; Ihnatenko, Dmytro Yu.; Kovalchuk, Vitalii V.
    ENG: Purpose. The analysis and comparison of the results of calculation by the finite-element model of the slope in the software complex «LIRA-CAD 2017» with the determination of the its stability in the software complex «OTKOS» allows to determine the accuracy the results and the most favorable conditions for the development of the displacement and parameters of the most dangerous surface slip for further calculation of anti-slip retaining structures. Methodology. The geomorphological data were obtained from the results of laboratory studies of soils in the considered slope. Creation of a bulk finite element model of the slope in accordance with the built cuts and depths of soil layers. Calculation of the nonlinear problem of finite-element simulation of the slope in the software complex «LIRA-CAD 2017». Creation and calculation of the stability problem of the landslide slope in the software complex «OTKOS» and comparison of the results of the its stress-strain state. Results. The results of calculating the finite-element model of the landslide slope in the software complex «LIRA-CAD 2017» and its stability in the software complex «OTKOS» were obtained. The analysis of the obtained results of sliding surfaces study is carried out. The calculation of the strengthening of the slope area is carried out with the help of soil cement retaining piles, located at right angles to the vector of the displacement direction. Originality. Despite the presence of a large number of different methods of studying the surfaces of sliding, it is impossible to determine exactly the scenario of the displacement, using only one of the calculation methods. First of all, this is due to the rather high variation of the initial data of the problem, which in turn depends on the environment and assumptions, as well as on external factors that can not be taken into account precisely. The next task is to carry out the calculation of the strengthening of the landslide slope by soil-cement piles. Practical value. It is known that it is advisable to use soil-cement piles as a protective element, which interacts well with the soil environment due to its structure of the source material. A comparative analysis of the calculation results of the slope stability with the help of software systems «LIRA-CAD 2017» and «OTKOS» gives an answer to the question of the its reliability.
  • Loading...
    Thumbnail Image
    Item
    Comprehensive Analysis of the Retaining Pile Structure with the Determining the Stability Factor by Numerical Methods
    (EDP Sciences, 2019) Dubinchyk, Olha I.; Petrenko, Volodymyr D.; Ihnatenko, Dmytro Yu.; Kildieiev, Vitalii R.
    EN: Abstract. The paper highlights the results of the complex analysis of the retaining pile structure with determining the stability coefficient by numerical methods. To achieve this purpose, after designing a structure with jet grouting piles, the research of the stability coefficients of the landslide hazard slopes in the software complex "OTKOS" and its stress state in the software complex LIRA-CAD system was conducted. The relevance of the completed research is to develop rational parameters of the pile structure. A comparison of determining the stability coefficient of a slope by different methods for the existing landslide stretch for the public roadways of local significance С141017 (Lviv-Shehyni) – Sudova Vyshnia was carried out. Originality of the paper lies in the fact that to determine the stability coefficient in the model, the layeredness of the slope under study is taken into account, and the nonlinear volumetric problem is solved in the course of the numerical analysis of the stress state. The rational distance between piles in the gap and the length of the pile under a certain percentage of cement and ground was justified.
  • Loading...
    Thumbnail Image
    Item
    Interaction of Soil-Cement Pile Supporting Structures with the Body of a Landslide
    (Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпро, 2017) Ihnatenko, Dmytro Yu.; Petrenko, Volodymyr D.; Tiutkin, Oleksii L.
    ENG: Purpose. Analysis and comparison of the landslide slope finite element model calculation results of the appliance of soil-cement piles, depending on the variation of the retaining structure rigidity, makes it possible to evaluate the effectiveness of their application and the cooperative work of piles with the displacement body. It also makes it possible to make a conclusion about the advantages of using this anti-landslide protection method of the slope. Methodology.Analysis of geomorphological data obtained from the results of laboratory studies of soils on the slope section is considered. Creation of a three-dimensional finite-element slope model according to the constructed sections and depths of the soil layers. Calculation of the nonlinear problem of finite element modeling of the slope with applying of soil-cement piles of various rigidity. Findings. The obtained results of calculating the finite element model of the landslide slope, and the analysis of the stress-strain state of the construction with soil-cement piles has been carried out.Originality. Despite the widespread of using soil-cement piles as enclosing structures for the construction of foundation pits and reinforcement of foundations of emergency structures, special attention should be paid to the study of the expediency of using soil-cement retaining pile structures on landslide areas. Practical value. It is known that soil-cement retaining piles are expediently in use as a protective element, which interacts quite well with the ground environment due to its structure of the initial material. Using of modern computer programs of finite element modeling makes it possible to calculate the efficiency of the use of soil-cement piles and to determine the parameters of the necessary retaining structure according to the given geological structure of the slope, and also, depending on its shape and the physical characteristics of the soils, to compare the performance of different protective landslide structures types.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback