Repository logo
  • English
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All publications
  • English
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Koveria, Andrii"

Now showing 1 - 10 of 10
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Application of Biomass Pellets for Iron Ore Sintering
    (Trans Tech Publications Ltd, Switzerland, 2021) Kieush, Lina; Koveria, Andrii; Qiao Zhu, Zuo; Boyko, Maksym M.; Sova, Artem; Yefimenko, Vadym
    ENG: Purpose. The use of biomass as fuel might solve several technological and environmental issues and overcome certain challenges of sinter production. In particular, as revealed by comprehensive analyses, biomass can be used as fuel for iron ore sintering. In this study, we investigate the use of some raw and pyrolysis-processed biomass pellet types, namely wood, sunflower husks (SFH), and straw, for iron ore sintering. In the experiments, the pyrolysis temperature was set to 673, 873, 1073, and 1273 K, and the proportion of biomass in the fuel composition was set to 25%. It was established that the addition of biofuels to the sintering blend leads to an increase in the gas permeability of the sintered layer. The analysis of the complex characteristics of the sintering process and the sinter strength showed the high potential of wood and sunflower husk pellets pyrolyzed at 1073 and 873 K, respectively, for iron ore sintering. The analysis of the macrostructure of the sinter samples obtained using biomaterials revealed that with higher pyrolysis temperatures; the materials tend to have greater sizes and higher amounts of pores and cracks. The composition analyses of the resultant sinters revealed that with higher temperature, the FeO content of the sinters tends to increase.
  • Loading...
    Thumbnail Image
    Item
    Influence of Biocoke on Iron Ore Sintering Performance and Strength Properties of Sinter
    (Dnipro University of Technology, Dnipro, Ukraine, 2022) Kieush, Lina; Koveria, Andrii; Boyko, Maksym M.; Yaholnyk, Maksym V.; Hrubiak, Andrii; Molchanov, Lavr; Moklyak, Volodymyr
    ENG: Purpose. The research purpose is to substantiate the use of biocoke as a fuel in the iron ore sintering, as well as its influence on the performance and properties of the resulting sinter. To completely replace conventional coke breeze, biocoke is produced using 5 wt.% biomass wood pellets at different carbonization temperatures of 950 or 1100°C. Further, the influence of biocoke on the sintering process and the sinter quality is studied at a high proportion of biomass pellets of 10, 15, 30, 45 wt.% and a carbonization temperature of 950°C. Methods. Carbonization is performed in shaft-type electric furnaces to produce laboratory coke or biocoke. Afterward, the sintering of iron ores is conducted on a sinter plant. To assess the sintering process and the quality of the resulting sinter, the filtration rate is determined on a laboratory sinter plant using a vane anemometer designed to measure the directional flow average velocity under industrial conditions. The sinter reducibility is studied using a vertical heating furnace to assess the effect of coke and biocoke on the sinter’s physical-chemical properties. Findings. It has been determined that biocoke, carbonized at a temperature of 950°C, has good prospects and potential for a shift to a sustainable process of iron ore sintering. Originality. It has been proven that biocoke with a biomass pellet ratio of up to 15 wt.%, obtained at a temperature of 950°C, does not affect the parameters characterizing the sintering process. The sinter strength indicators correspond to the use of 100 wt.% conventional coke breeze. Biocoke used with a high proportion of biomass pellets of 30 and 45 wt.% causes a deterioration in the sinter quality. Practical implications. The results of using biocoke with the addition of 5-15 wt.% biomass pellets and at a temperature of 950°C are within the standard deviation, which makes it possible to use biocoke with 15 wt.% biomass pellets instead of industrial coke breeze.
  • Loading...
    Thumbnail Image
    Item
    Investigation into the Effect of Multi-Component Coal Blends on Properties of Metallurgical Coke via Petrographic Analysis under Industrial Conditions
    (MDPI, 2022) Kieush, Lina; Koveria, Andrii; Schenk, Johannes; Rysbekov, Kanay; Lozynskyi, Vasyl; Zheng, Heng; Matayev, Azamat
    ENG: The coalification rank of the coal blend components and their caking properties initially impact the coke’s quality. In part, the quality of coke depends on the technological parameters of the coke production technology, such as the method of blend preparation, the coking condition, the design features of the coke ovens, and the technique used for post-oven treatment. Therefore, to improve the coke quality, the main attention is paid to the quality of the coal blend. The petrographic analysis is the simplest and most reliable way to control coal quality indicators under industrial conditions. In this paper, the effect of nine industrial blends on coke quality using petrographic analysis has been studied. Additionally, this paper addresses the efficient use of coals and the preparation of coal mixtures under industrial conditions, which contributes to the sustainability of cokemaking. For the preparation of blends, 17 coals were used, for which, in addition to petrographic and proximate analyzes, the maximum thickness of the plastic layer was determined. Industrially produced cokes were analyzed for coke reactivity index (CRI), coke strength after reaction with CO2 (CSR), and Micum indices (M25 and M10). It has been established that the petrographic properties of coal blends are reliable parameters for assessing the quality of coke under conditions of an unstable raw material base, multi-component blends, and changes in coking regimes. Moreover, the research results have shown that to ensure the rational use of coals in the preparation of coal blends to achieve the required coke quality and consequently the sustainability of cokemaking, it is necessary to consider not only the mean reflectance of vitrinite but the proximate and caking properties of coals.
  • Loading...
    Thumbnail Image
    Item
    Metallurgical Coke Production with Biomass Additives: Study of Biocoke Properties for Blast Furnace and Submerged
    (MDPI, Switzerland, 2022) Bazaluk, Oleg; Kieush, Lina; Koveria, Andrii; Schenk, Johannes; Pfeiffer, Andreas; Zheng, Heng; Lozynskyi, Vasyl
    ENG: Biocoke has the potential to reduce the fossil-based materials in metallurgical processes, along with mitigating anthropogenic CO2- and greenhouse gas (GHG) emissions. Reducing those emissions is possible by using bio-based carbon, which is CO2-neutral, as a partial replacement of fossil carbon. In this paper, the effect of adding 5, 10, 15, 30, and 45 wt.% biomass pellets on the reactivity, the physicomechanical, and electrical properties of biocoke was established to assess the possibility of using it as a fuel and reducing agent for a blast furnace (BF) or as a carbon source in a submerged arc furnace (SAF). Biocoke was obtained under laboratory conditions at final coking temperatures of 950 or 1100 °C. Research results indicate that for BF purposes, 5 wt.% biomass additives are the maximum as the reactivity increases and the strength after reaction with CO2 decreases. On the other hand, biocoke’s physicomechanical and electrical properties, obtained at a carbonization temperature of 950 °C, can be considered a promising option for the SAF.
  • Loading...
    Thumbnail Image
    Item
    Physical Modelling of Additives Dissolution Features in the Bath of an Induction Furnace Crucible
    (Associazione Italiana di Metallurgia, Milano, Italia, 2024) Molchanov, Lavr; Golub, Tetiana; Kononenko, Ganna; Koveria, Andrii; Kimstach, Tetiana V.
    ENG: The technology of melting metals in an induction furnace allows the production of a wide range of alloyed steels to meet the different needs of society and is more environmentally friendly as it produces fewer emissions. A special interest for modern metallurgy are the processes of alloying and deoxidizing, which occur directly in the induction furnace by introducing lump additives. In this work, the investigation of the process of melting of additives during induction melting has been studied in order to determine the optimal modes of introduction of deoxidizing and alloying additives into the melt, providing their maximum assimilation by the liquid metal. The study was carried out on the physical model simulating the crucible of a laboratory induction furnace equipped with a closed system of hydrodynamic circulation of liquid. The results demonstrate that the most rational place for the introduction of ferroalloys into the induction furnace crucible is the area of the melt located at a distance of 1/2 radius from the center of the crucible. There is also a tendency for the dissolution time to decrease as the depth of introduction into the melt increases. Considering that in practical industrial conditions, it is extremely difficult to organize the introduction of deoxidizing and alloying agents into the volume of metal melt, the necessity of holding the melt when introducing ferroalloy is reasonable.
  • Loading...
    Thumbnail Image
    Item
    Production of Iron Ore Pellets by Utilization of Sunflower Husks
    (Technical University of Košice, Slovakia, 2021) Kieush, Lina; Boyko, Maksym; Koveria, Andrii; Yaholnyk, Maksym; Poliakova, Natalia
    ENG: Steel production is the most dynamic industry and one of the key sectors for developing the global economy. The growing iron ore production increases its beneficiation and granulating for subsequent iron and steel production use. As a result, CO2 emissions and harmful substances increase, negatively affecting society and the environment. In this regard, it is important to study the use of biomass for the production of iron ore pellets. Lignocellulosic biomass is a renewable and sustainable source of heat and energy that can mitigate climate change. The influences of alternative fuel use on technological indicators of the process and quality of iron ore pellets have been analyzed. The efficiency of using 40.4-60.7 vol.% of sunflower husks on the combined machine “straight grate - rotary kiln - annular cooler” to partially replace natural gas in iron ore pellets production under industrial conditions has been studied. It was found that the combustion of sunflower husks generates enough heat (19.31 MJ kg−1) to obtain iron ore pellets with good strength. After evaluating the parameters of the combined machine and the quality of the resulting pellets, it was determined that it would be rational to replace up to 48.3 vol.% of natural gas with crushed sunflower husks.
  • Loading...
    Thumbnail Image
    Item
    Specific Heat Capacities as Key Factors for the Calcination of Carbonaceous Materials
    (Slovnaft VURUP a.s, Slovakia, 2023) Bezugly, Volodymyr; Koveria, Andrii; Bezugly, Аnatolii V.
    ENG: The development of new and improvement of existing technologies for the calcination of carbonaceous materials requires their specific heat capacities, which are key factors of the process. Analytical temperature dependences of specific heat capacities of carbonaceous materials were established in the study, considering material transformations and determination errors when they are heated to a temperature of 1800oC and then cooled to a temperature of 20oC. The minimum necessary temperatures of the calcination process and their duration are also determined, which are guaranteed to ensure the required quality of the products in conditions of dispersion of the properties of the raw materials. The new dependencies facilitate for more reliable mathematical modeling of the calcination process of carbonaceous materials by taking into account material transformations and the direction of temperature change and will ensure a more rational development of calcination furnaces and the process. Additionally, the determined theoretical minimum possible specific energy consumption allows for estimating the energy efficiency of the calcination process.
  • Loading...
    Thumbnail Image
    Item
    Structurally Dependent Electrochemical Properties of Ultrafine Superparamagnetic ‘Core/Shell’ γ-Fe2O3/Defective α-Fe2O3 Composites in Hybrid Supercapacitors
    (MDPI, Switzerland, 2021) Bazaluk, Oleg; Hrubiak, Andrii; Moklyak, Volodymyr; Moklyak, Maria; Kieush, Lina; Rachiy, Bogdan; Gasyuk, Ivan; Yavorskyi, Yurii; Koveria, Andrii; Lozynskyi, Vasyl; Fedorov, Serhii S.
    ENG: The paper presents a method for obtaining electrochemically active ultrafine composites of iron oxides, superparamagnetic ‘core/shell’ γ-Fe2O3/defective α-Fe2O3, which involved modifying sol-gel citrate synthesis, hydrothermal treatment of the formed sol, and subsequent annealing of materials in the air. The synthesized materials’ phase composition, magnetic microstructure, and structural, morphological characteristics have been determined via X-ray analysis, Mossbauer spectroscopy, scanning electron microscopy (SEM), and adsorption porometry. The mechanisms of phase stability were analyzed, and the model was suggested as FeOOH → γ-Fe2O3 → α-Fe2O3. It was found that the presence of chelating agents in hydrothermal synthesis encapsulated the nucleus of the new phase in the reactor and interfered with the direct processes of recrystallization of the structure with the subsequent formation of the α-Fe2O3 crystalline phase. Additionally, the conductive properties of the synthesized materials were determined by impedance spectroscopy. The electrochemical activity of the synthesized materials was evaluated by the method of cyclic voltammetry using a three-electrode cell in a 3.5 M aqueous solution of KOH. For the ultrafine superparamagnetic ‘core/shell’ γ-Fe2O3/defective α-Fe2O composite with defective hematite structure and the presence of ultra-dispersed maghemite with particles in the superparamagnetic state was fixed increased electrochemical activity, and specific discharge capacity of the material is 177 F/g with a Coulomb efficiency of 85%. The prototypes of hybrid supercapacitor with work electrodes based on ultrafine composites superparamagnetic ‘core/shell’ γ-Fe2O3/defective α-Fe2O3 have a specific discharge capacity of 124 F/g with a Coulomb efficiency of 93% for current 10 mA. View Full-Text.
  • Loading...
    Thumbnail Image
    Item
    Study of Cellulose Additive Effect on the Caking Properties of Coal
    (Dnipro University of Technology, Dnipro, Ukraine, 2023) Koveria, Andrii; Kieush, Lina; Usenko, Andrii Yu.; Sova, Artem
    ENG: Purpose. The work aims to study the effect of cellulose on the caking properties of various types of coking coal used in coking blends. The change in caking abilities has been analyzed to achieve the aim using standard techniques. At the same time, the effect of biomass additives on the plastic properties of coal has been analyzed comprehensively; the optimal amount of additive for practical purposes has been determined. Methods. Multiple coal characteristics in the plastic stage have been studied using a dilatometric method, the enhanced swelling pressure method, the plastometric method, and the Roga index test. The first three methods make it possible to characterize the caking properties of coal; and the Roga index test characterizes its coking ability. Findings. It has been identified that the optimal amount of biomass additive to study the effect on the properties of coal in the plastic state is more than 5 wt. %. In the paper, experimental dependences of the 5 wt. % cellulose addition influence on the caking properties of four coal grades have been obtained. The results showed a slight decrease in caking properties in terms of swelling, swelling pressure, thickness of the plastic layer, and caking ability. Simultaneously, the most sensitive methods for assessing the effect of cellulose addition on the coal plastic properties are the dilatometric method as well as the enhanced method for the swelling pressure determination. Originality. A comprehensive study of the effect of pure cellulose as a component of lignocellulose biomass on the properties of different coal grades in the plastic state (i.e. caking prperteis) has been carried out. A slight change in the coal properties in the plastic state with adding 5 wt. % cellulose, decreasing caking properties, has been shown. An important, not previously reported, conclusion is that the cellulose additive does not have any noticeable effect on the physical properties of the coal charge owing to its loose structure. Practical implications. A slight change in the caking properties of coal has been established with the addition of 5 wt. % which is of practical importance for the preparation of coal blends, and the coke production in the cases of using additives of lignocellulosic biomass without losing its quality. Additionally, renewable additive use while obtaining fuels and reducing agents is an approach to mitigate the negative environmental impact.
  • Loading...
    Thumbnail Image
    Item
    Walnut Shells as a Potential Fuel for Iron Ore Sintering
    (Trans Tech Publications Ltd, Switzerland, 2021) Kieush, Lina; Koveria, Andrii; Boyko, Maksym; Hrubyak, Andrii; Sova, Artem; Yefimenko, Vadym
    ENG: Purpose. Iron ore sintering is a predominant process for fine iron ore and its concentrate to be applied in the blast furnace process. However, sintering produces a negative impact on the environment. One of the effective ways to reduce greenhouse gas emissions from iron ore sintering is to use CO2-neutral biomaterials for the fuel needs of this technology. Walnut shells (WNS) are a promising raw material for such fuel substitute. Herein, the effect of the raw and the pyrolyzed WNS with a constant fineness of 3-0 mm on the sintering process and the sinter properties were studied. The proportion of WNS in the fuel composition was set to 25 wt.%. It has been established that the use of WNS pyrolyzed up to 873 K is optimal. Additionally, the difference in the reactivity of WNS and coke breeze has provoked the studies on the influence of the pyrolyzed WNS size on the sintering process. WNS size was set to 1-0, 3-0, 5-0, and 7-0 mm. It has been found that the most optimal both for the iron ore sintering process and the sinter quality is the use of WNS with a particle size of 3-0 mm, subjected to preliminary pyrolysis up to 873 K.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback