Repository logo
  • English
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All publications
  • English
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sybir, Artem"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Analysis of Changes in Global Warming Potential during Enrichment and Production of Battery-Grade Graphite Using Electrothermal Fluidized Bed Technology
    (IOP Publishing Ltd, 2024) Hubynskyi, Semen M.; Sybir, Artem; Fedorov, Serhii S.; Usenko, Andrii Yu.; Hubynskyi, Mykhailo V.; Vvedenska, Tetyana
    ENG: The greenhouse gas emissions during the production of anode class graphite for the conditions of Ukraine have been calculated. Conventional technologies and technologies using electrothermal fluidized bed (EFB) for natural and synthetic graphite have been studied. Calculations are carried out with respect to the whole technological chain, starting from extraction and processing of raw materials and ending with finishing processing (coating). As a result, it is shown that the technology of using EFB for purification of natural graphite and graphitization of synthetic graphite is competitive in terms of global warming potential (GWP). In the production of natural graphite using thermal purification with EFB instead of chemical purification, emissions of greenhouse gases practically remain at the same level. At the same time, the use of acids is eliminated, and the environmental impact associated with them is reduced. Production of synthetic graphite of anodic quality in EFB furnaces allows to reduce greenhouse gases (GHG) emissions by 40-50% in comparison with traditional graphitization technologies in Acheson and Kastner furnaces. The effect is achieved by reducing energy and raw material consumption.
  • Loading...
    Thumbnail Image
    Item
    Phenomena at Three-Phase Electroslag Remelting
    (Springer Nature, 2021) Liu, Zhong-li; Medovar, Lev; Stovpchenko, Ganna; Petrenko, Volodymyr; Sybir, Artem; Volchenkov, Yev.
    ENG: The electroslag remelting (ESR) process is widely used to produce high-quality ingots and billets for high-alloyed steels and alloys. Both the single-phase and three-phase alternating current diagram with bifilar and monofilar connection are in use for heavy ingot manufacturing. The numerical simulation of the three-phase bifilar circuit for the 120 t three-phase bifilar six-electrode ESR furnace at different variants of electric connection was presented and discussed. At the bifilar diagram of power supply, the geometrical location of electrodes in a mould holds critical importance for performances: the close location of bifilar pair electrodes provides the highest heat productivity, but the equidistant location of electrodes gives a much more uniform heat distribution. The monofilar mulit-electrode diagram of three-phase connection without phase shift shows the most uniform distribution of potential and heat generation as well as a favorable magnetic field that makes this kind the most promising for providing a high quality of heavy ingots.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback