Статті КУПТПЗ (ЛІ) (Раніше КТТ (ЛФ))
Permanent URI for this collection
ENG: Articles
Browse
Browsing Статті КУПТПЗ (ЛІ) (Раніше КТТ (ЛФ)) by Subject "ambient temperature"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item A Comprehensive Procedure for Estimating the Stressedstrained State of a Reinforced Concrete Bridge Under the Action of Variable Environmental Temperatures(РС ТЕСHNOLOGY СЕNTЕR, Kharkiv, Ukraine, 2021) Kovalchuk, Vitalii V.; Onyshchenko, Artur; Fedorenko, Olexander; Habrel, Mykola; Parneta, Bogdan Z.; Voznyak, Oleh M.; Markul, Ruslan V.; Parneta, Mariana; Rybak, RomanENG: This paper reports the full-scale experimental measurements of temperature distribution over the surfaces of bridges’ steel-concrete beams under the influence of positive and negative ambient temperatures. It has been established that the temperature is distributed unevenly along the vertical direction of a bridge’s steel-concrete beam. It was found that the metal beam accepted higher temperature values. The maximum registered temperature difference between a metal beam and a reinforced concrete slab at positive ambient temperatures was +9.0 °C, and the minimum temperature difference was −2.1 °C. The mathematical models for calculating a temperature field and a thermally strained state of bridges’ steel-concrete beams under the influence of variable climatic temperature changes in the environment have been improved, taking into consideration the uneven temperature distribution across a bridge’s reinforced concrete beam. The possibility has been established to consider a one-dimensional problem or to apply the three-dimensional estimated problem schemes as the estimation schemes for determining the thermoelastic state of reinforced concrete bridges. The temperature field and the stressed state of bridges’ reinforced concrete beams were determined. It was found that the maximum stresses arise at the place where a metal beam meets a reinforced concrete slab. These stresses amount to 73.4 MPa at positive ambient temperatures, and 69.3 MPa at negative ambient temperatures. The amount of stresses is up to 35 % of the permissible stress values. The overall stressed-strained state of a bridge’s reinforced concrete beams should be assessed at the joint action of temperature-in- duced climatic influences and loads from moving vehicles.