2014
Permanent URI for this community
Browse
Browsing 2014 by Subject "algebra of sets"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Производная функции множества по мере и её применение (теоретические основы инвестиционных задач)(Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпропетровськ, 2014) Босов, Аркадий Аркадьевич; Лоза, Петр АлексеевичRU: Цель. В работе необходимо разработать теоретические основы для решения инвестиционных задач, представленных в виде функций множества как задач векторной оптимизации или задач на условный экстремум. Методика. В качестве исследования инвестиционных задач используются функции множества и их производные по мере. Доказывается необходимое условие минимума функции множества. В задачах на условный экстремум используется метод Лагранжа. Показано, что этот метод применим и для функций множества. Для доказательства используется мера, обобщающая меру А. Лебега, и вводится понятие предела последовательности множеств. Отмечается, что введенный предел по мере совпадает с классическим пределом по Э. Борелю и может быть использован при доказательстве существования производной от функции множества по мере на сходящейся последовательности множеств. Результаты. Предложен алгоритм решения инвестиционной задачи на условный экстремум применительно к задачам инвестирования. Научная новизна. Научная новизна состоит в том, что в многовариантных задачах на условный экстремум от непосредственного перебора можно отказаться, а использовать предлагаемый алгоритм построения (отбора) вариантов, которые позволяют строить выпуклую линейную огибающую решения по Парето. Данная огибающая позволяет лицу, принимающему решения (ЛПР), выбрать такие варианты, которые «лучше» с его позиции, и учитывать некоторые критерии, формализация которых затруднена или они не могут быть описаны в математических терминах. Практическая значимость. Результаты исследования дают необходимое теоретическое обоснование принятия решений в инвестиционных задачах, когда объектов инвестирования значительное число и непосредственный перебор вариантов весьма затруднителен по затратам времени даже для современной вычислительной техники.