№ 3 (63)
Permanent URI for this collection
Browse
Browsing № 3 (63) by Subject "axiomatic design"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item One-to-One Nonlinear Transformation of the Space with Identity Plane(Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпропетровськ, 2016) Malyi, A. D.; Ulchenko, T. V.; Shcherbak, A. S.; Popudniak, Yu. Ya.; Starosol’ska, Tetiana V.; Starosolskaya, T. V.EN: Purpose. Study of geometric transformations. We will consider the so-called point transformations of space. Methodology. The most important are one-to-one transformations. They allow exploring and studying the properties of the transformed object using the properties of the original object (line, surface and figure) and the properties of the transformation. Cremona transformations occupy a special place in the set of one-to-one nonlinear transformations. Construction of one-parameter (stratifiable) transformations is carried out as one-parameter set of plane transformations, both linear and non-linear ones. The plane, in which the specific transformation is prescribed, moves in space by a certain law forming a one-parameter set of planes. The set of such plane transformations makes up the space transformation. Findings. The designed graphics algorithms and the established transformation equations allow building the visual images of transformed surfaces and conducting their research by analytical geometry methods. Originality. By completing elementary algebraic transformations of this equation, we obtain the cissoids equation. If the plane φ is continuously moved parallel to itself, it results in occurrence of surface, whose carcass will be the set of cissoids and the set of front-projecting lines. Practical value. The considered set of stratifiable algebraic transformations gives an effective means for exploring new curves and surfaces obtained by transforming the known algebraic lines and surfaces. These graphic algorithms allow graphically depicting the transformed lines and surfaces. The considered procedure of drawing up analytical formulas of specific transformations allows us to study the transformed surfaces and lines using the methods of analytic geometry. The above transformations can be of arbitrary high order, which is especially important during the design of complex technical surfaces such as aircraft components, parts of water and gas turbines, supports of the structures subject to strong flow of liquid, etc. Space modelling issues, including the building of graphic plane models of space, are relevant both in theoretical terms and in terms of application of the non-linear surfaces investigated on their basis for constructing the technical forms of parts and aggregates of construction machine movable elements, the middle surfaces of shells, the surfaces of turbulent blade, etc.Item Взаимно однозначные нелинейные преобразования пространства с тождественной плоскостью(Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпропетровськ, 2016) Малый, Анатолий Данилович; Ульченко, Татьяна Владимировна; Щербак, Андрей Святославович; Попудняк, Юрий Яковлевич; Старосольская, Татьяна ВасильевнаRU: Цель. Работа направлена на исследование геометрических преобразований. Мы будем рассматривать так называемые «точечные» преобразования пространства. Методика. Наиболее важными являются взаимно однозначные преобразования. Они позволяют по свойствам исходного объекта (линии, поверхности, фигуры) и свойствам преобразования исследовать и изучать свойства преобразованного объекта. Во множестве взаимно однозначных нелинейных преобразований особое место занимают Кремоновы преобразования. Конструирование однопараметрических (расслояемых) преобразований осуществляется как однопараметрическое множество плоских преобразований (линейных и нелинейных). Плоскость, в которой задано конкретное преобразование, перемещается (преобразуется) в пространстве по определенному закону, образуя однопараметрическое множество плоскостей. Совокупность таких плоских преобразований составляет пространственное преобразование. Результаты. Авторами сконструированы графические алгоритмы и выведены уравнения преобразования, позволяющие строить наглядные изображения преобразованных поверхностей и осуществлять их исследование методами аналитической геометрии. Научная новизна. Выполнив элементарные алгебраические преобразования этого уравнения, получим уравнение циссоиды. Если плоскость φ непрерывно перемещать параллельно самой себе, то образуется поверхность, каркасом которой будет множество циссоид и множество фронтально-проецирующих прямых. Практическая значимость. Рассмотренное множество расслояемых алгебраических преобразований дает эффективное средство изучения новых кривых и поверхностей, получаемых преобразованием известных алгебраических линий и поверхностей. Приведенные графические алгоритмы позволяют наглядно изобразить преобразованные линии и поверхности. Рассмотренная методика составления аналитических формул конкретных преобразований позволяет изучать преобразованные линии и поверхности методами аналитической геометрии. Исследованные преобразования могут быть как угодно высокого порядка, что особенно важно при конструировании сложных технических поверхностей типа агрегатов летательных аппаратов, деталей водяных и газовых турбин, опор сооружений, находящихся в сильном потоке жидкости, и др. Вопросы моделирования пространства, в том числе построение графических плоскостных моделей пространства, актуальны как в теоретическом плане, так и в плане применения исследованных на их основе нелинейных поверхностей для конструирования технических форм деталей и агрегатов рабочих органов строительных машин, срединных поверхностей оболочек, поверхностей турбулентных лопаток и др.