№ 18 (ЕСБЗТ)
Permanent URI for this collection
Browse
Browsing № 18 (ЕСБЗТ) by Subject "energy saving"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Випробування асинхронних трифазних двигунів(Дніпровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпро, 2019) Шаповалов, Олександр Сергійович; Карасьов, О. П.UKR: Проведено огляд методів післяремонтної перевірки трифазних асинхронних двигунів в умовах ремонтних цехів локомотивних депо підкреслює необхідність впровадження спеціалізованих стендів для проведення післяремонтних випробувань з метою підвищення якості проведення ремонту, зменшення кількості відмов в роботі допоміжного обладнання, і за рахунок цього підвищення безпеки руху залізничного транспорту в цілому. Проаналізовано сучасний стан розвитку напівпровідникової та мікропроцесорної техніки, який дозволяє реалізувати живлення випробовуваного асинхронного двигуна в широкому діапазоні живлячих частот, що в свою чергу дозволяє побудувати універсальні стенди для випробування трифазних асинхронних двигунів. Вартість перетворювачів частоти знаходиться на економічно прийнятному рівні. Виконаний аналітичний огляд можливих схем взаємного навантаження при випробовуванні трифазних асинхронних двигунів. Схеми можуть бути побудовані як з використанням статичного перетворювача частоти, так і без нього. Подано коротку характеристику кожної моделі, із зазначенням як переваг так і недоліків кожної окремої схеми. Як видно з характеристики, схеми з використанням статичних перетворювачів частоти вирізняються вищою енергоефективністю, дозволяють проводити випробування в широкому діапазоні живлячих частот, в свою чергу вартість стенду з використанням статичного перетворювача буде вищою. Схеми без перетворювача частоти вирізняються низькою вартість, але й низькою енергоефективністю, можливістю проводити випробування лише на частоті живлення мережі та високим рівнем споживання реактивної потужності. Пропонується прийняти до уваги викладений матеріал при проектуванні стендів взаємного навантаження трифазних асинхронних електродвигунів з подальшим техніко-економічним обґрунтуванням вибраної схеми.Item Лінеаризування математичної моделі тягового електроприводу постійного струму(Дніпровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпро, 2019) Кедря, Михайло Михайлович; Сердюк, Тетяна Миколаївна; Кумпан, М. Л.; Сердюк, Ксенія МиколаївнаUKR: В статті розглядається електровоз постійного струму з індивідуальним тяговим приводом послідовного збудження. Такий привід можна представити у вигляді одновимірної електромеханічної системи, в якій керованою величиною є дотична сила тяги на ободі колісної пари. Керуючим впливом на привід буде напруга живлення двигуна. Режим управління приводом залежить від швидкості руху електровоза і струму двигуна. Оскільки зараз намітилася тенденція до підвищення швидкостей руху та впровадження нових типів рухомого складу з новою системою керування, дослідження роботи двигунів постійного струму є актуальною задачею. Метою наукової роботи є розробка математичної моделі тягового електроприводу електровозу постійного струму для дослідження впливу зміни напруги в контактній мережі на тяговий електропривод. Для досягнення поставленої мети виконано: - визначені та лінеаризовані основні рівняння та залежності, що описують процес роботи електропривода – тягового двигуна електровоза ДЕ1; - розроблена та проаналізована динамічна структура за системою лінеаризованих рівнянь; - побудовані частотні характеристики роботи тягового електропривода; - проведено моделювання перехідних процесів в електроприводі при раптовій зміні напруги та буксуванні колісної пари. Основні результати полягають у наступному: - створено математичну модель тягового електропривода електровоза ДЕ-1, яка дозволяє досліджувати динамічні режими роботи, обумовлені допущеннями моделі; - математична модель складається з трьох форм: перша форма – лінеаризовані диференційні рівняння; друга – структурні схеми та передаточні функції; третя – частотні характеристики. Запропонована математична модель може бути використана для будь-якого виду тягового електроприводу постійного струму з урахуванням його особливостей.