№ 1 (132) (ТПМ ІПБТ)
Permanent URI for this collectionhttp://crust.ust.edu.ua/handle/123456789/16392
Browse
Item Моделювання впливу режиму продування ванни на масообмінні процеси та шлакоутворення у кисневому конвертері(НМетАУ, Дніпро, 2022) Камкіна, Людмила Володимирівна; Мішалкін, Анатолій Павлович; Камкін, Володимир Юрійович; Мяновська, Яна Валеріївна; Дворковий, О. І.; Ісаєва, Людмила ЄвгенівнаUKR: Мета. Встановити раціональні режими продування ванни та шлакоутворення при використанні традиційних та дослідних матеріалів, які забезпечують ефективне рафінування сталі від шкідливих домішок. Дослідити вплив зміни гідродинамічного стану конвертерної ванни на стійкість футерування проблемних зон конвертера та втрати металу з виносом, викидами, з корольками металу, що зливаються зі шлаком. Методика. В роботі використано методи холодного та високотемпературного моделювання процесу виплавки сталі. При проведенні експериментів з холодного моделювання дотримувалися режиму проникнення в рідину струменів газу на зразку і моделі з забезпеченням Lрз/Нв (модель) = Lрз/Нв (конвертер). Нв – глибина ванни на моделі та діючому конвертері. Lрз – довжина реакційної зони при високотемпературному моделюванні визначалась як довжина первинної реакційної зони, а при холодному – як довжина струменевої ділянки, що утворюється при проникненні газового струменю в рідину. Ці умови разом з забезпеченням подібності геометрії моделі та зразка вважали необхідними та достатніми для отримання даних для якісної та кількісної оцінки як гідродинамічного стану конвертерної ванни, так і впливу зміни способу та параметрів продування ванни на фізико-хімічні особливості рафінування сталі за часом процесу. Додатковою умовою, є дотримання умови рівності відношення площини ванни до площини внутрішнього перерізу сопла продувної фурми: (Sванни/Sсопла)модель=(Sванни/Sсопла)зразок на моделі та зразку. Наукова новизна. Теоретично обґрунтовано та експериментально підтверджена доцільність використання для встановлення впливу на фізико-хімічні процеси та перетворення в конвертерній ванні режиму продування, для характеристики якого вибрали параметр - гідродинамічний фактор, що дорівнює співвідношенню LрзI/Нв. В свою чергу, довжина реакційної зони, що утримується при проникненні газового струменю в ванну залежить від інтенсивності продування: Lрз ~ K q0,4. Вперше для визначення під час продування киснем залізовуглецевого розплаву конвертерної ванни інтенсивності переводу сірки в шлак для діапазону зміни вмісту в ньому вуглецю 3,0...0,25 використано параметр, що визначає стан перемішування ванни під час її продування киснем - LрзI/Нв, де LрзI – довжина первинної реакційної зони, яка утворюється при проникненні кисневого струменю в металевий розплав. Первинна реакційна зона є джерелом утворення пузирів СО за реакцією FeO + C = Fe +CO, які відповідають за інтенсивність перемішування ванни шляхом утворення циркуляційних потоків металу в ванні, які в свою чергу відповідають за транспорт елементів-домішок до межі метал-шлак. Показано, що в заданому діапазоні зміни вмісту в металевому розплаві вуглецю залежність швидкості видалення з металу в шлак сірки від гідродинамічного параметру LрзI/Нв носить екстремальний характер. В цей час, коли досягається максимальний ефект перемішування ванни, при наявності необхідної основності шлакової фази швидкість реакції десульфурації для даних умов є максимальною. В подальшому в разі реалізації традиційної схеми конвертування, для якої характерно різке підвищення вмісту в шлаку оксидів заліза (15...17%) швидкість реакції десульфурації ще при достатній швидкості металевих потоків зменшувалася. Практична значимість. Зниження інтенсивності продування металевої ванни в умовах реалізації виплавки сталі в лабораторному кисневому конвертері з верхнім кисневим продуванням з 4,0 м3/т·хв до 3,2 м3/т·хв, при збільшенні часу продування на 17,8%, підвищило показник десульфурації. Доведення реакції десульфурації до її більш повного завершення досягнуто за рахунок раціональної організації перемішування розплаву в конвертерній ванні: відповідна та ефективна з точки зору завершення десульфурації сталі швидкість доставки металу до реакційної поверхні забезпечила вищу у порівнянні з більш високо інтенсивним продуванням ванни киснем швидкістю реакції десульфурації на межі розподілу метал-шлак. При цьому значення показника Ls =(S)/[S] підвищилось з 6,4 до 10,5.