Статті КПММ
Permanent URI for this collectionhttp://crust.ust.edu.ua/handle/123456789/666
ENG: Articles
Browse
Item The Calculation of Stress Intensity Factor Steel of Railway Wheels(Silesian University of Technology, Katowice, Poland, 2020) Vakulenko, Ihor O.; Proydak, Svetlana V.; Askerov, HangardasEN: From an analysis of the dependence complex of carbon steel properties on structural parameters, it was found that for an isostructural state, the influence of austenite grain size on impact strength exceeds the dependence on carbon content. As a result of explaining correlation relationships between individual mechanical characteristics, to evaluate critical stress intensity factor, a relationship is proposed based on the use of impact strength. The proportionality coefficient in proposed dependence is determined by ratio of elongation to narrowing at tensile test.Item Formation of Carbon Steel Structure During Hot Plastic Deformation(Dnipro National University of Railway Transport named after Academician V. Lazaryan, Dnipro, 2020) Vakulenko, Ihor O.; Bolotova, Daria M.; Proidak, Svitlana V.; Askerov, Hangardas; Cug, H.; Tchaikovska, H. O.EN: Purpose. The main purpose of the work is to determine the peculiarities of the development of recrystallization processes of carbon steel austenite depending on the degree of hot plastic deformation and to develop proposals for improving the structural state of the metal of the railway solid-rolled wheel. Methodology. Two carbon steels of a railway wheel with a minimum and maximum carbon content of 0.55 and 0.65 % and other chemical elements within the grade composition of the steel 60 were used as research material. Samples in the form of cylinders with a diameter of 20 mm and a height of 40 mm were heated in a muffle furnace, exposed for a certain time to equalize the temperature across the cross section of the sample. After that, the samples were subjected to hot compression on Instron type test machine. The temperature interval of hot compression of the samples was 950–1100 ºС, with deformation degrees in height in the range of 10–40%. The strain rate was 10-3–10-2 sec-1 . A standard etching was used to detect the boundaries of the austenite grains. Structural studies were performed using Epikvant type light microscope at magnifications sufficient to determine the structure of austenite grains. The grain size of austenite was determined by the methods of quantitative metallography. Findings. In the case of hot compression of the railway wheel blank, increasing the concentration of carbon atoms only within the grade composition of the steel is sufficient to increase the average austenite grain size, which confirms the proposals to limit the carbon content in the metal of railway wheels. The formation of a certain degree of austenite structural heterogeneity at the cross section of the rim or hub of the railway wheel is due to a change in the development mechanism of recrystallization processes depending on the deformation value. Under conditions of the same degree of hot plastic deformation, the replacement of one-time compression by fractional one is accompanied by a violation of the conditions of formation of the recrystallization nucleus. As a result of the specified replacement of the scheme of hot plastic deformation we obtain reduction in the austenite grain size. Originality. Based on a study of the development of collective recrystallization processes during the hot compression of carbon steel of the railway wheel, it was determined that the increase in carbon content contributes to the austenite grain increase. After hot compression of the wheel blank, the structural inhomogeneity of austenite that occurs is determined by a change in the mechanism of recrystallization processes development. During deformations above the critical degree, the recrystallization nuclei are formed and successively grow, which leads to the structure refinement. In the case of deformations below the critical value, the growth of austenite grains occurs according to the coalescence mechanism, according to which fragments of boundaries with large disorientation angles consistently disappear. Practical value. For austenite grain refining in massive elements of solid-rolled railway wheel we offer to replace one-time hot compression by fractional one.Item Influence of the Isothermal Transformation Temperature on the Structure and Properties of Low-Carbon Steel(Український державний університет науки і технологій, Дніпро, 2024) Vakulenko, Ihor O.; Plitchenko, Serhii O.; Asgarov, Khangardash; Lytvynov, Bohdan V.; Orak, Abdulkadir; Umur, HakanENG: Purpose. The study is aimed at evaluating the effect of the isothermal transformation temperature on the structure and properties of low-carbon steel. Methodology. The material for the study was a 3 mm diameter wire made of mild steel with the following chemical composition: 0.21% C, 0.47% Mn, 1.2% Si, 0.1% Cr, 0.03% S, 0.012% P. The 0.3 m long wire samples were subjected to austenitizing at 920 °C for 8...9 min, after which they were held iso-thermally for 11 min at temperatures of 650...200 °C, followed by cooling in air. The strength, plastic properties, and strain hardening coefficient were determined from the analysis of tensile curves. Findings. It was found that a decrease in the temperature of isothermal transformation, starting from 450...400 °C, increases the amount of Widmannstätten ferrite due to the disappearance of polyhedral ferrite grains. At the same time, the number of areas with locally located dispersed cementite particles similar to pearlite colonies increases, and bainite crystals appear. Against the background of a sharp decrease in the strain hardening coefficient in the range of 450...400 °C, the ability of the bainite phase to undergo plastic deformation should be considered one of the reasons for the delay in den-sity reduction. Originality. The effect of steel hardening with a decrease in the pearlite transformation temperature is based on the grinding of ferrite grains, an increase in the amount of Widmannstätten ferrite, and the dispersion of pearlite colonies. The strengthening effect of steel with a bainite structure is based on an increase in the degree of supersaturation of the solid solution with carbon atoms and dispersion hardening by particles of the carbide phase. Practical value. The optimal structural state of steel intended for the manufacture of such critical elements as a sup-port beam, railroad car bogie, etc. is a mixture of phase components with different dispersion and morphology, and their quantitative ratio is determined by the operating conditions of a particular product.Item Plasma Case Hardening of Wear-Resistant High-Chromium Cast Iron(Springer New York Consultants Bureau, 2017) Efremenko, Vasiliy G.; Chabak, Yu. G.; Karantzalis, A. E.; Lekatou, A.; Vakulenko, Ihor A.; Mazur, V. A.; Fedun, V. I.EN: The effect of plasma parameters on the case hardening of wear-resistant high-chromium cast iron in different structural condition is studied. Correlation relations were established between the initial and finite microstructure of the surface layer formed after plasma hardening at different heating rates. Microhardness profiles over the cross-section of the modified layer are structurally substantiated. Recommendations for optimizing the complex bulk-surface cast iron treatment conditions are given.Item Влияние величины и температуры горячей деформации на размер зерна аустенита углеродистой стали(Національний технічний університет України «Київський політехнічний інститут», Київ, 2016) Перков, Олег Николаевич; Вакуленко, Игорь Алексеевич; Кузьмичев, В. М.RUS: С ростом размера зерна аустенита концентрация примесных атомов увеличивается и, в результате этого, происходит снижение сопротивления металла процессам разрушения, особенно в условиях динамических нагрузок. Уменьшение критической температуры хрупкого разрушения железнодорожных колес может быть достигнуто за счет уменьшения размера зерна аустенита.Item Вплив гарячої деформації на структуру аустеніту вуглецевої сталі(Український державний університет науки і технологій, ІПБТ, Дніпро, 2022) Вакуленко, Ігор Олексійович; Болотова, Дар’я Михайлівна; Перков, Олег Миколайович; Плітченко, Сергій ОлександровичUKR: Мета. Визначення впливу температури і ступеня гарячої пластичної деформації на розвиток збіркової рекристалізації аустеніту вуглецевої сталі. Методика. В якості матеріалу для досліджень використані вуглецеві сталі з концентрацією вуглецю 0,55 і 0,65%, що відповідають максимальному і мінімальному значенню в межах марочного складу для суцільнокатаних залізничних коліс. Кількість інших хімічних елементів відповідала вимогам нормативної документації на залізничні колеса. Зразки для досліджень мали форму циліндрів діаметром 20 та висотою 40мм. Різну ступінь пластичної деформації отримували при стисненні зі швидкістю деформації порядку 10-3 с-1. Для нагріву зразків до температур гарячого обтиснення використані нагрівальні електричні печі камерного типу. При нагріві зразків здійснені заходи, що запобігають окисленню та локальному зниженню концентрації атомів вуглецю на їх поверхнях. Після термічної обробки зразків та механічної підготовки поверхні, виявлення структури аустеніту здійснювали з використанням травника на основі суміші розчинів з соляної та пікринової кислот. Структуру сталей досліджували під світловим мікроскопом. Розмір зерна аустеніту визначали за методиками кількісної металографії. Результати. Дослідженням структури вуглецевої сталі визначено, що за умов підвищення температури відпалу, виникнення структурної неоднорідності аустеніту обумовлено зміною механізму розвитку збіркової рекристалізації. Починаючи від 10 % гарячого обтискування, пропорційно ступеню пластичної деформації, розвиток збіркової рекристалізації за механізмом руху великокутових меж приводить до подрібнення зерна аустеніту і формуванню однорідної структури. При ступенях гарячої деформації менш ніж 10 %, щільності дислокацій недостатньо для формування зародку для розвитку збіркової рекристалізації за механізмом руху великокутових меж. В результаті значно швидше відбудеться рекомбінація дислокацій в зернах гарячедеформованого аустеніту, що призведе до розділення зерен на окремі фрагменти. Їх розмір буде визначатися щільністю дислокацій, що введені за гарячого обтискування. Кути разорієнтації між фрагментами мають проміжні значення між межами з великими кутами разорієнтації та субмежами, що визначає їх низьку мобільність. Для такої структури розвиток збіркової рекристалізації в аустеніті буде відбуватися за механізмом розчинення меж зерен. В результаті, виникає значна неоднорідність структури аустеніту, що визначається різницею в розмірах між сусідніми зернами до декількох разів. Наукова новизна. В залежності від умов гарячого обтискування вуглецевої сталі, визначене значення пластичної деформації, що розділяє розвиток збіркової рекристалізації аустеніту за якісно різними механізмами. За низького значення гарячого обтискування, коли щільності дислокацій недостатньо для формування зародка збіркової рекристалізації за механізмом руху великокутових меж, відбувається зростання зерен аустеніту за механізмом розчинення меж зерен. Практична значущість. Визначення впливу температури і ступеня гарячої пластичної деформації на механізм розвитку збіркової рекристалізації, дозволить оптимізувати технологію обтискування заготівки суцільнокатаного залізничного колеса.Item Залежність розміру зерна аустеніту від умов гарячого обтискування вуглецевої сталі(Придніпровська державна академія будівництва та архитектури (ПДАБА, Дніпро), 2018) Вакуленко, Ігор Олексійович; Чайковський, О. О.; Вакуленко, Леонід Ігорович; Болотова, Дар’я Михайлівна; Чайковська, А. О.UK: Анотація. Мета роботи − дослідження впливу температури і ступеня гарячого обтискування на розмір зерна аустеніту вуглецевої сталі. Матеріал і методика досліджень. Як матеріал для досліджень використана вуглецева сталь фрагмента залізничного колеса з умістом вуглецю 0,61 %. Температурний інтервал гарячого обтискування складав 950...1 150 ˚С, зі ступенями деформації 10...50 %. Дослідження мікроструктури сталі проводилися із застосуванням світлового мікроскопу. Підготовку об’єкта для досліджень, виявлення структури аустеніту і розрахунок розміру зерна аустеніту виконано у відповідності з методиками кількісної металографії. Результати. За отриманими залежностями визначено, що за витримки 1,5 хв після завершення гарячої деформації розвиток процесів динамічної і статичної рекристалізації викликає незначне зростання зерна аустеніту. Для більшості виробів, що виготовляються гарячим пластичним деформуванням указаної витримки достатньо, щоб зберегти частково гарячий наклеп аустеніту перед прискореним охолодженням для термічного зміцнення. Наукова новизна. На основі аналізу внутрішньої будови вуглецевої сталі залежно від параметрів гарячого обтискування визначено вплив тривалості витримки після завершення деформації на характер зміни розміру зерна аустеніту. Зменшення ступеня гарячої деформації сприяє підвищенню впливу температури обтискування на дисперсність аустенітної структури. Практична цінність. Характер впливу ступеня, температури гарячого обтискування і тривалості витримки після завершення деформації може бути використаний для удосконалення режимів високотемпературних формотвірних операцій вуглецевих сталей.Item Упрочнение износостойкого высокохромистого чугуна при поверхностном модифицировании плазменной обработкой(Институт проблем прочности имени Г. С. Писаренко НАН Украины, Киев, 2017) Ефременко, Василий Георгиевич; Чабак, Ю. Г.; Карандзалис, А. Е.; Лекату, А.; Вакуленко, Игорь Алексеевич; Мазур, В. А.; Федун, В. И.RU: Исследовано влияние параметров режима плазменной закалки на упрочнение поверхности износостойкого высокохромистого чугуна в различном структурном состоянии. Установлены корреляционные связи между исходной и конечной микроструктурой поверхностного слоя, формируемой при плазменном модифицировании с разной интенсивностью нагрева. Структурно обоснованы профили микротвердости по сечению модифицированного слоя, даны рекомендации по оптимизации режима комплексной объемно-поверхностной обработки чугуна.Item Формування структури вуглецевої сталі під час гарячої пластичної деформації(Дніпровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпро, 2020) Вакуленко, Ігор Олексійович; Болотова, Дар’я Михайлівна; Пройдак, Світлана Вікторівна; Аскеров, Х.; Куг, Х.; Чайковська, А. О.UK: Мета. Основною метою роботи є визначення особливостей розвитку процесів рекристалізації аустеніту вуглецевої сталі залежно від ступеня гарячої пластичної деформації та розробка пропозицій щодо поліпшення структурного стану металу залізничного суцільнокатаного колеса. Методика. Як матеріал для досліджень використані дві вуглецеві сталі залізничного колеса з мінімальним і максимальним вмістом вуглецю 0,55 і 0,65 % та іншими хімічними елементами в межах марочного кладу сталі 60. Зразки у вигляді циліндрів діаметром 20 мм і висотою 40 мм нагрівали в муфельній печі, витримували певний час для вирівнювання температури по перетину зразка. Після цього зразки піддавали гарячому обтискуванню на випробувальній машині типу «Інстрон». Температурний інтервал гарячого обтискування зразків складав 950–1 100 ºС, за ступенів деформації по висоті в інтервалі 10–40 %. Швидкість деформації дорівнювала 10-3–10-2с -1. Для виявлення меж зерен аустеніту використовували стандартний травник. Структурні дослідження проводили з використанням світлового мікроскопа типу «Епіквант» за збільшень, достатніх для визначення особливостей будови зерен аустеніту. Величину розміру зерна аустеніту визначали за методиками кількісної металографії. Результати. У разі гарячого обтискування заготівки залізничного колеса збільшення концентрації атомів вуглецю лише в межах марочного складу сталі достатньо для зростання середнього розміру зерна аустеніту, що підтверджує пропозиції щодо обмеження вмісту вуглецю в металі залізничних коліс. Формування визначеного ступеня структурної неоднорідності аустеніту по перетину обода або маточини залізничного колеса обумовлене зміною механізму розвитку процесів рекристалізації залежно від величини деформації. За умов однакового ступеня гарячої пластичної деформації заміна одноразового обтискування на подрібнене супроводжується порушенням умов формування зародка рекристалізації. У результаті вказан заміни схеми гарячої пластичної деформації досягається зменшення розміру зерна аустеніту. Наукова новизна. На основі дослідження розвитку процесів збиральної рекристалізації під час гарячого обтискування вуглецевої сталі залізничного колеса визначено, що збільшення вмісту вуглецю сприяє збільшенню зерна аустеніту. Після завершення гарячого обтискування заготівки колеса структурна неоднорідність аустеніту, що виникає, визначається зміною механізму розвитку процесів рекристалізації. Під час деформацій вище критичного ступеня відбувається формування й послідовне зростання зародків рекристалізації, що призводить до подрібнення структури. У разі деформацій нижче критичного значення зростання зерен аустеніту відбувається за механізмом коалесценції, за яким послідовно зникають фрагменти меж із великими кутами дезорієнтації. Практична значимість. Для подрібнення зерен аустеніту в масивних елементах залізничного суцільнокатаного колеса пропонуємо заміну одноразового гарячого обтискування на подрібнене.