Навчально-науковий центр "Організація будівництва та експлуатації доріг" ДІІТ (раніше Факультет "Організація будівництва доріг та експлуатація колії")
Permanent URI for this communityhttp://crust.ust.edu.ua/handle/123456789/535
ENG: Educational and Scientific Center "Organisation of Conctruction and Operation of Roads" DIIT (Faculty "Organisation of Construction Roads and Operation of the Way")
Browse
Item Improving the Efficiency of the Heating System for Public Buildings Infrastructure in the Context of DNURT(Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, Дніпропетровськ, 2016) Pshinko, Oleksandr M.; Kuznetsov, Valeriy; Yatsenko, Dmytro K.; Gabrіnets, Volodymyr O.EN: Purpose. The paper analyses the possibility and terms of increasing the efficiency of heating and ventilation systems of public buildings at the present stage of development and the specific climatic conditions of Ukraine. The main purpose is to develop specific measures for public buildings, which will lead to a significant reduction in energy costs for heating and air conditioning system. The example is similar system of DNURT compact campus, which is heated with its own autonomous boiler that uses natural gas. Methodology. The statistical heat loss analysis for the last 5 years allows defining the types and calculating the heat loss values for specific conditions. These losses are compared with those in the world practice and based on the comparison and analysis of the current system there are offered the ways to reduce the heat loss values through the use of various technical and organizational methods. The paper also proposes involvement for this purpose of secondary and alternative energy sources. The secondary energy resources include the heat that is emitted by people and that coming out with the air during ventilation of buildings. The renewable sources include solar and geothermal energy. To enhance the heat transfer medium temperature capacity it is proposed to use the heat pumps. Findings. The maximum possible use of the proposed measures and implementation of rational schematic and engineering solutions for heat and hot water supply systems cam reduce the energy loss for heating and hot water by 30-35%. Originality. The paper for the first time proposed the use of new integrated approaches to maintain the desired heat balance in the winter period, as well as the new schematic solutions for heating and ventilation systems, both in winter and in summer, based on the use of heat pumps and secondary energy resources. Practical value. The introduction of the proposed schematic solutions and approaches demand relatively small capital investments and do not require significant reconstruction of already installed systems.Item Prediction of Atmosphere Pollution in Case of Emissions From Main Mine Fans(Dnipro National University of Railway Transport named after Academician V. Lazaryan, 2019) Biliaiev, Mykola M.; Bondarenko, Iryna O.; Rusakova, Tetiana I.; Shynkarenko, Viktor I.; Gabrіnets, Volodymyr O.ENG: Purpose. Emissions from mine ventilation system can create intensive atmosphere air pollution. As a rule, a huge amount of dust from mine fan enters atmosphere low layers. An important task is the development of methods to assess levels of the atmosphere pollution near mines and settlements. To solve this problem it is important to have physically proved mathematical models. Nowadays to predict the atmosphere pollution near settlements which are effected by mine fan the empirical model OND–86 is used. This model does not take into account many important physical factors. So, the purpose of this study is the development of quick computing mathematical model to predict the atmosphere pollution in case of dust emissions from mine fan. Methodology. To predict levels of the atmosphere pollution in case of mine fan work 3D equation of dust convective – diffusive flow was used. This equation takes into account gravity fallout, wind velocity, atmosphere turbulent diffusion, location of dust emission source. To sole modeling equation the implicit difference scheme of splitting was used. Findings. Developed mathematical model allows quick prediction of the level of atmosphere pollution in case of dust emissions from mine ventilation fan. The models allow to obtain zones of contamination near settlements which are situated in vicinity of mine. Originality. The developed mathematical model takes into account a number of physical factors, which at the present time are not considered on the days when prediction of the atmosphere pollution in settlements near mine is carried out. Practical value. On the basis of the developed mathematical model program code was created. This code can be used for evaluation of atmosphere pollution in settlements which are effected mine fan emissions.